

Carnegie Mellon University

Motivation

Ambiguous Pairwise Preferences

Limited Scalability of Alignment

values.

Re-training N new reward models to model new value or user is expensive.

[2] Orca: Progressive Learning from Complex Explanation Traces of GPT-4 (Mukherjee et al., arXiv preprint 2023)

Aligning to Thousands of Preferences via System Message Generalization

Seongyun Lee¹*, Sue Hyun Park¹*, Seungone Kim¹², Minjoon Seo¹

¹KAISTAI, ²Carnegie Mellon University *Equal Contribution

- We propose contextualizing user values in system messages to align LLMs to diverse preferences in a scalable way.
- Using our data curation strategy, the trained LLM effectively adapts to unseen preferences and is also generally helpful and harmless.

System Message Generalization

Generic response
 Artificial Intelligence Machine Learning []
Personalized response
[] 6. Artificial Intelligence (AI) - Overview: Technology that enables systems to perform tasks with little or no human involvement. - Machine Learning: AI systems that learn from data []
[] 1. Artificial Intelligence (AI) - Current Relevance: AI powers voice assistants [] - Future Potential: AI could revolutionize healthcare diagnosis, [] - Key Players: Google, OpenAI, IBM. []

• Hierarchically augment user values

• Verbalize combinations of values in the system message, i.e., meta-instruction that guides a model how to respond to subsequent instructions

Scaling Data for Generalization

Multifaceted Collection statistics

ent	# unique
truction	65,653
message	196,956
sion	4
nension	6,027
	797,904

Janus SFT DPO, ORPO Reward modeling

Three system messages per instruction

Unseen Multifaceted Preference

Multifaceted Bench: 921 prompts from 5 benchmarks with synthetic mu messages and instance-specifi Input: multifaceted system message + user prompt

Human pairwise evaluation \checkmark LLM-as-a-Judge absolute scoring \neg

				✓					-	-		
							N / 1 . 1 .	Toxicit	$\mathbf{y}\downarrow$	Fluency \downarrow	Diver	sity ↑
Model	<i>mf</i> -AlpacaEval	mf-FLASK	<i>mf</i> -Koala	mf-MT-Bench	<i>mf</i> -Self-Instruct	Average	Models					
		Pretrained of	open models					Avg. max toxic	Toxic prob	Output PPL	dist-2	dist-3
Mistral 7B v0.2	2.80	1.93	2.45	2.30	2.28	2.23	GPT-2 [†] [60]	0.53	0.52	11.31	0.85	0.85
LLaMA 3 8B	2.60	2.92	2.69	2.39	2.34	2.54		0.50	0.50	22.59	0.96	0.96
LLaMA 3 70B	3.76	3.23	3.67	3.50	3.65	3.49		0.52	0.52	52.58	0.90	0.00
2		Instruction-tun	ed open mode	els		1	GeDi [†] [34]	0.36	0.22	60.03	0.84	0.83
LLaMA 2 Chat 70B	3 98	3 68	4 11	3 66	3 87	3 79	DExperts [†] [44]	0.31	0.12	32.41	0.84	0.84
Mistral 7B Instruct v0.2	4.20	3.82	4.18	3.82	3.98	3.93	DAPT [†] [18]	0.43	0.36	31.21	0.84	0.84
Mixtral 8x7B Instruct v0.1	4.24	3.90	4.16	3.94	4.08	4.03	PPO^{\dagger} [75]	0.22	0.04	14 27	0.80	0.84
LLaMA 3 Instruct 8B	4.38	3.88	4.33	4.08	4.17	4.10	$\frac{110}{110}$	0.22	0.01	17.27	0.00	0.01
LLaMA 3 Instruct 70B	4.55	4.26	4.59	4.42	4.45	4.39	Quark ⁺ [48]	0.12	0.04	12.47	0.80	0.84
		JANUS	s <i>suite</i>				Mistral 7B Instruct v0.2	0.29	0.11	19.43	0.92	0.92
JANUS 7B	4.43	4.06	4.41	4.11	4.01	4.17	LLaMA 3 Instruct 8B	0.30	0.12	28.88	0.92	0.92
JANUS+ORPO 7B	4.41	4.03	4.45	4.00	4.22	4.18	JANUS 7B	0.26	0.06	14.58	0.93	0.95
JANUS+DPO 7B	4.45	4.13	4.43	4.21	4.17	4.24	JAROBID		0.00	1 1100	0.70	0.70
	Prefe	rence-optimized	d proprietary	models			+ moderate perfo	rmance on se	ocial bias	benchmarl	٢S	
GPT-3.5 Turbo-0125	4.05	3.86	4.15	3.87	3.85	3.91	Minogondor Cro	NAC Daire DE	\mathbf{D}			
GPT-4-0613	4.25	4.00	4.18	4.16	4.13	4.10	(vvinogender, Cro	WS-Pairs, BE	N V			
GPT-4-Turbo-0125	4.45	4.27	4.61	4.45	4.27	4.35						

Response Verbosity Effect of Multifacetedness at Test Time

JANUS 7B

multifacet

default

Project page (w/ code, data, models

Results

General Helpfulness

Input: default system message + user prompt

mpts nom J
nultifaceted system
fic score rubrics

good		Both	are l	3ad I		Oppone	nt win
3	38.4			12	2.4	12.4	
	25	.4		8.3		19.4	
28.9)		6.3		27	.3	
Percen	6 tage	0		8(C		100

Models	AlpacaEv	val 2.0	MT-Bench	Arena Hard Auto v0.1
	LC Win Rate (%)	Win Rate (%)	Score [0,10]	Score [0,100]
An C	• • •			
Mistral 7B Instruct v0.2	17.1	14.7	7.2	10.8
Gemma 7B Instruct	10.4	6.9	6.4	7.5
LLaMA 3 8B Instruct	22.9	22.6	7.6	17.9
JANUS 7B	26.9	27.8	7.7	20.9

Also outperforms 30B~ models, e.g., Mixtral 8X7B Instruct v0.1, Tulu 2+DPO 70B, GPT-3.5-Turbo

Results on RealToxicityPrompts

Harmlessness

Analysis

sage	Response	Average			
		MF	MT-Bench		
	_	3.93	7.23		
	-	4.27	9.20		
	helpful	3.88	7.41		
	helpful	3.87	7.53		
	multifaceted	4.01	7.61		
ed	multifaceted	4.17	7.74		

Length distribution of LLM responses and reference answers on Multifaceted Bench

Response Diversity

ROUGE-L scores of three different personalized responses per user prompt

Model	Avg	Max
Mistral 7B Instruct v0.2	0.26	0.31
GPT-4 Turbo	0.28	0.34
JANUS 7B	0.23	0.28