ALIGNING TO THOUSANDS OF PREFERENCES VIA SYSTEM MESSAGE GENERALIZATION **Project page** Paper (w/ code, data, models) Seongyun Lee¹*, Sue Hyun Park¹*, Seungone Kim¹², Minjoon Seo¹ * Equal contribution ¹KAISTAI ²Carnegie Mellon University Kim Jaechul Graduate School

Bullet-pointed

A need for individualized and scalable alignment

Pairwise preference data does not explain *all* preferences Different values, different winning response

Re-training N new reward models to model new value or user is expensive

Advanced

terminology

Concise

summaries

Verbalize values in the system message to flexibly steer toward personalized responses

Key factor 1: Hierarchical value augmentation strategy

Key factor 2: Training recipe for stronger generalization

Aligns to unseen multifaceted values in system messages V

Aligns to general public preferences \checkmark										
Size	Models	AlpacaEv	val 2.0	MT-Bench	Arena Hard Auto v0.1					
~		LC Win Rate (%)	Win Rate (%)	Score [0,10]	Score [0,100]					
•••										
< 30B	Mistral 7B Instruct v0.2	17.1	14.7	7.2	10.8					
	Gemma 7B Instruct	10.4	6.9	6.4	7.5					
	LLaMA 3 8B Instruct	22.9	22.6	7.6	17.9					
	JANUS 7B	26.9	27.8	7.7	20.9					

Percentage

Model	<i>mf</i> -AlpacaEval	mf-FLASK	<i>mf</i> -Koala	mf-MT-Bench	mf-Self-Instruct	Average					
Pretrained open models											
Mistral 7B v0.2	2.80	1.93	2.45	2.30	2.28	2.23					
LLaMA 3 8B	2.60	2.92	2.69	2.39	2.34	2.54					
LLaMA 3 70B	3.76	3.23	3.67	3.50	3.65	3.49					
Instruction-tuned open models											
LLaMA 2 Chat 70B	3.98	3.68	4.11	3.66	3.87	3.79					
Mistral 7B Instruct v0.2	4.20	3.82	4.18	3.82	3.98	3.93					
Mixtral 8x7B Instruct v0.1	4.24	3.90	4.16	3.94	4.08	4.03					
LLaMA 3 Instruct 8B	4.38	3.88	4.33	4.08	4.17	4.10					
LLaMA 3 Instruct 70B	4.55	4.26	4.59	4.42	4.45	4.39					
JANUS suite											
JANUS 7B	4.43	4.06	4.41	4.11	4.01	4.17					
JANUS+ORPO 7B	4.41	4.03	4.45	4.00	4.22	4.18					
JANUS+DPO 7B	4.45	4.13	4.43	4.21	4.17	4.24					
Preference-optimized proprietary models											
GPT-3.5 Turbo-0125	4.05	3.86	4.15	3.87	3.85	3.91					
GPT-4-0613	4.25	4.00	4.18	4.16	4.13	4.10					
GPT-4-Turbo-0125	4.45	4.27	4.61	4.45	4.27	4.35					

Additional analyses and insights

- Significant toxicity \$\frac{1}{1}\$ fluency \$\frac{1}{2}\$ diversity \$\frac{1}{2}\$ in RealToxicityPrompts
- Demonstrates **robust** performance with or without personalized input.
- Learning to handle multifacetedness in input and/or output is beneficial.
- Verification of quality, diversity, safety, and bias in Appendix and TBA!

Takeaways

- Clarifying user values behind the preference in the input can reach diverse alignment targets. Varying the system message can provide strong guidance.
- Fine-tuning on **Multifaceted Collection**, an instruction dataset containing 197k system messages can facilitate individualized, scalable value alignment.
- Janus 7B models are easily steerable towards user-preferred responses while being generally useful and safe too.